Jumat, 17 Desember 2010

elastisitas

Penerapan Elastisitas dalam kehidupan sehari-hari

Pada awal penjelasan mengenai hukum Hooke, gurumuda telah berjanji akan membahas mengenai aplikasi elastisitas dalam kehidupan sehari-hari. Nah, berikut ini beberapa penerapan elastisitas dalam kehidupan kita.
Kita mulai dari teknologi yang sering kita gunakan, yaitu sepeda motor atau mobil.
Gambar disamping ini adalah pegas yang digunakan sebagai peredam kejutan pada kendaraan sepeda motor. Istilah kerennya pegas digunakan pada sistem suspensi kendaraan bermotor. Tujuan adanya pegas ini adalah untuk meredam kejutan ketika sepeda motor yang dikendarai melewati permukaan jalan yang tidak rata. Ketika sepeda motor melewati jalan berlubang, gaya berat yang bekerja pada pengendara (dan gaya berat motor) akan menekan pegas sehingga pegas mengalami mampatan. Akibat sifat elastisitas yang dimilikinya, pegas meregang kembali setelah termapatkan. Perubahan panjang pegas ini menyebabkan pengendara merasakan ayunan. Dalam kondisi ini, pengendara merasa sangat nyaman ketika sedang mengendarai sepeda motor. Pegas yang digunakan pada sepeda motor atau kendaraan lainnya telah dirancang untuk mampu menahan gaya berat sampai batas tertentu. Jika gaya berat yang menekan pegas melewati batas elastisitasnya, maka lama kelamaan sifat elastisitas pegas akan hilang. Oleh karena itu saran dari gurumuda, agar pegas sepeda motor-mu awet muda, maka sebaiknya jangan ditumpangi lebih dari tiga orang. Perancang sepeda motor telah memperhitungkan beban maksimum yang dapat diatasi oleh pegas (biasanya dua orang).
Pegas bukan hanya digunakan pada sistem suspensi sepeda motor tetapi juga pada kendaraan lainnya, seperti mobil, kereta api, dkk. (gambar kiri – per mobil)
Pada mobil, terdapat juga pegas pada setir kemudi (wah, gurumuda belum punya gambar ;) ). Untuk menghindari benturan antara pengemudi dengan gagang setir, maka pada kolom setir diberi pegas. Berdasarkan hukum I Newton (Hukum Inersia), ketika tabrakan terjadi, pengemudi (dan penumpang) cenderung untuk terus bergerak lurus. Nah, ketika pengemudi bergerak maju, kolom setir tertekan sehingga pegas memendek dan bergeser miring. Dengan demikian, benturan antara dada pengemudi dan setir dapat dihindari.
Karet Ketapel
Nah, contoh yang sangat sederhana dan mungkin sering anda temui adalah ketapel. Gurumuda dari ndeso dan ketika masih sangat nakal seperti dirimu, ketapel adalah alat yang paling mujarab untuk membidik buah2an milik tetangga yang ranum dan mengundang selera. Sttt… jangan ditiru :) kalau dirimu tinggal di kota, kayanya tiap hari berurusan dengan game, ngenet, gamenet….gitu deh. ayo ngaku... paling ketapel juga ga tahu… hehe… piss.. lanjut. Ketika hendak menembak burung dengan ketapel misalnya, karet ketapel terlebih dahulu diregangkan (diberi gaya tarik). Akibat sifat elastisitasnya, panjang karet ketapelakan kembali seperti semula setelah gaya tarik dihilangkan.
Kasur Pegas
Contoh lain adalah kasur pegas. Ketika dirimu duduk atau tidur di atas kasur pegas, gaya beratmu menekan kasur. Karena mendapat tekanan maka pegas kasur termampatkan. Akibat sifat elastisitasnya, kasur pegas meregang kembali. Pegas akan meregang dan termampat, demikian seterusnya. Akibat adanya gaya gesekan maka suatu saat pegas berhenti bergerak. Dirimu yang berada di atas kasur merasa sangat empuk akibat regangan dan mampatan yang dialami oleh pegas kasur.
Dinamometer
Pernahkah dirimu melihat dinamometer ? mudah-mudahan di laboratorium fisika sekolah anda ada. Dinamometer, sebagaimana tampak pada gambar di samping adalah alat pengukur gaya. Biasanya digunakan untuk menghitung besar gaya pada percobaan di laboratorium. Di dalam dinamometer terdapat pegas. Pegas tersebut akan meregang ketika dikenai gaya luar. Misalnya anda melakukan percobaan mengukur besar gaya gesekan. Ujung pegas anda kaitkan dengan sebuah benda bermassa. Ketika benda ditarik, maka pegas meregang. Regangan pegas tersebut menunjukkan ukuran gaya, di mana besar gaya ditunjukkan oleh jarum pada skala yang terdapat pada samping pegas.
Timbangan
Pernahkah anda mengukur berat badan ? timbangan yang anda gunakan untuk mengukur berat badan (dalam fisika, berat yang dimaksudkan di sini adalah massa) juga memanfaatkan bantuan pegas. Pegas lagi, pegas lagi… hidup kita selalu ditemani oleh pegas. Neraca pegas yang digunakan untuk mengukur berat badan, terdapat juga neraca pegas yang lain (gambar kanan – neraca pegas buah)
Masih ada contoh lain yang berkaian dengan elastisitas pegas. Pernah fitness ? bagi pria-pria perkasa yang terlihat macho dengan otot lengan yang kuat dan dada bidang :) , pasti pernah menggunakan alat tersebut. wah, ayo tebak… alat apakah itu ? alat tersebut terbuat dari pegas. Yang ini PR ya ? sekali-sekali gurumuda ngasih PR-lah
Penerapan elastisitas benda padat pada konstruksi bangunan
Ada yang bercita-cita menjadi arsitek atau ahli bangunan ? pahami penjelasan ini secara baik ya, sebagai bekal di hari tua :)
Pada pembahasan mengenai tarikan, tekanan dan geseran, kita telah belajar mengenai perubahan bentuk pada setiap benda padat akibat adanya tegangan yang dialami benda tersebut. Ketika sebuah benda diberikan gaya luar maka akan timbul gaya dalam alias gaya internal pada benda itu sendiri. Ini adalah gaya tegangan yang telah dijelaskan panjang lebar oleh gurumuda sebelumnya.
Salah satu pemanfaatan sifat elastisitas benda padat dalam konstruksi bangunan adalah berkaitan dengan teknik memperluas ruangan. Berikut ini beberapa cara yang digunakan ahli bangunan dalam memperluas ruang sebuah bangunan (rumah, dkk). Mari kita bahas satu persatu….
Tiang dan Balok penyanggah pada pintu
Setiap rumah atau bangunan lainnya pasti memiliki pintu atau penghubung ruangan yang bentuknya seperti gambar di bawah. Kebanyakan bangunan menggunakan batu dan bata sebagai bahan dasar (disertai campuran semen dan pasir).
Persoalannya, batu dan bata sangat lemah terhadap tarikan dan geseran walaupun kuat terhadap tekanan. Dirimu bisa membuktikan hal ini. Jika disekitar tempatmu terdapat batu dan bata, jika batu dan bata ditumpuk (disusun secara vertikal) dalam jumlah banyak, batu dan bata tidak mudah patah (bentuknya tetap seperti semula). Dalam hal ini batu dan bata sangat kuat terhadap tekanan. Tetapi jika batu dan bata mengalami tegangan tarik dan tegangan geser, batu dan bata mudah patah. Oleh karena itu digunakan balok untuk mengatasi masalah ini. Balok mampu mengatasi tegangan tarik, tegangan tekan dan tegangan geser. Jika anda amati balok penyanggah pada pintu rumah, tampak bahwa balok tersebut tidak berubah bentuk. Sebenarnya terdapat perubahan bentuk balok (amati gambar di bawah), hanya perubahannya sangat kecil sehingga tidak tampak ketika dilihat dari jauh. Bagian atas balok mengalami mampatan akibat adanya tegangan tekan yang disebabkan beban di atasnya (batu dan bata dkk), sedangkan bagian bawah balok mengalami pertambahan panjang (akibat tegangan tarik). Tegangan geser terjadi di dalam balok.
Lengkungan setengah lingkaran
Pernahkah dirimu melihat pintu atau penhubung ruang sebuah bangunan seperti tampak pada gambar di bawah ? lengkungan setengah lingkaran ini pertama kali diperkenalkan oleh orang romawi. Apabila dirancang dengan baik maka batu-batu yang disusun melengkung mengalami tegangan tekan (batu-batu saling berdempetan) sehingga dapat menahan beban berat yang ada di atasnya. Ingat ya, batu sangat kuat terhadap tekanan.
Sekian ya, kalo dirimu belum paham, coba baca kembali secara perlahan-lahan. Saran dari gurumuda, sebaiknya baca semua materi secara berurutan seperti yang telah gurumuda urutkan di bawah. Alasannya, setiap konsep yang dijelaskan sebelumnya sangat penting untuk pembahasan berikutnya. Kalo dirimu belum pelajari pembahasan sebelumnya, ntar malah gak nyambung…..
Referensi :
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Kanginan, Marthen, 2000, Fisika 2000, SMU kelas 1, Caturwulan 2, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Materi Elastisitas :

  1. Hukum hooke dan elastisitas
  2. Tarikan, tekanan dan geseran
  3. Penerapan elastisitas dalam kehidupan sehari-hari

Tidak ada komentar:

Posting Komentar